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ABSTRACT 

The approaches to overcoming local ambiguity due to the dependence of the kinetic 
equation parameters are considered. The application of the mathematical apparatus of the 
Jacobi matrices enables one to determine the number of both independent kinetic parameters 
and kinetic functions used to describe a process. No more than five parameters in the 
Sestak-Berggren equation and only some kinetic functions are found to possess indepen- 
dence. 

INTRODUCTION 

Ambiguity of the inverse kinetic problem solution is the main hindrance 
in describing heterogeneous processes in terms of formal models. Following 
the classification adopted in ref. 1, local and global ambiguities are dis- 
tinguished. Local ambiguity appears when the number of unknown kinetic 
parameters exceeds their ultimate quantity possible for particular experi- 
mental data. As a result, the kinetic parameters lose the property of 
independence while their numerical values lose physical sense. Global am- 
biguity implies that several equivalent sets of kinetic parameters may be 
determined for a single set of experimental data. 

The problem of independent kinetic parameters and functions used to 
describe heterogeneous processes is considered in view of a practical applica- 
tion of the findings to overcome local ambiguity of the inverse kinetic 
problem. 

MATHEMATICAL ASPECT 

Assessment of the ultimate quantity of kinetic parameters that may be 
obtained by particular experimental data on a process is based on the 
mathematical apparatus of the Jacobi matrices [2]. Jacobi matrices were 
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applied with this aim for the first time in ref. 3. The essence of this approach 
was also dealt with in refs. 1 and 4 and is presented below in brief. 

Thus, for some system of functions (1) 

+,(x1, +...,x,) 

$2(X,? XW..,X,) 

$&% x*Yrx,) 

(1) 

the Jacobi matrix is of the form of eqn. (2) [2] 

k J= t$ [ 1 Xl 

Here, if the system of eqn. (1) is other than independent, then the determi- 
nant of matrix (2) is zero, and the rank J equals the number of independent 
functions. 

So, if I+L, in eqn. (1) is some function of kinetic parameters, then the rank 
of the Jacobi matrix is, correspondingly, the number of independent param- 
eters that may be determined using the experimental data [3]. To illustrate 
the effectivenyess of this approach, we shall consider it in application to the 
well-known Sestak-Berggren equation [5] and compare the results with 
those reported in ref. 6. 

ANALYSIS 0~ INDEPENDENCE OF KINETIC PARAMETERS IN THE SESTAK- 
BERGGRENEQUATION 

In the logarithmic form and allowing for the pre-exponent in the form 
A = A,T’ [6] the above equation acquires the form 

In g =lnA,+rlnT-~T+nln(l-a)+mlna+pln[-ln(l-a)] 
( 1 

In eqn. (3), the velocity logarithm is the function of six kinetic parameters 

where i is the ordinal number of the experimental velocity value. Substitut- 
ing eqn. (4) into eqn. (2) gives the Jacobi matrix as 

J= 
[ 

In T, l/T, ln(1 - (pi) In (pi ln[ -ln(l - a,)] 
ln .TN . . . i;~~. . . .lnii l..&,. . . . in. ;, . . . .l;[’ _.(;._ ...j. 1 (5) 

where N 2 6. Then, the rank of matrix (5) determined in terms of experi- 
mental values of T and (Y yields the maximum number of independent 
parameters that may be specified from eqn. (3). 
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In order to determine the matrix rank, the forward running of the Gauss 
algorithm was used with partial choice of the governing element [7]. The 
number of non-zero elements on the main diagonal of the triangular matrix 
so obtained is equal to its rank [8]. 

In ref. 6, the determinant of the normalized matrix of type (5) was applied 
as a criterion of a possible quantity of parameters determined with the use 
of eqn. (3). For the experimental data on CaCO, decomposition [6], the 
absolute value of the determinant of the normalized matrix (5) calculated for 
three parameters (In A,- E/R, n) and four parameters (In A, Y,- E/R, n) 
are equal to 0.476 and 0.102, respectively [6]. The latter value (0.102) is 
considered to characterize a poorly stipulated matrix. From this it was 
concluded impossible to make an estimation of more than three parameters, 
in principle. The main disadvantage of the method used in ref. 6 is that the 
value of the determinant is not a single-valued criterion of a poorly stipu- 
lated matrix [7,9]. On the contrary, the value of the matrix rank allows 
satisfactorily exact prediction of a possible number of parameters de- 
termined from eqn. (3). Thus, according to the data in ref. 6, the rank of 
matrix (5) equals three for both cases (In A, - E/R, n) and (In A, r, - E/R, 
n). This, in particular, indicates that the application of the relation A = A,T’ 
is useless since it results in the degeneration of the matrix and the parameter 
r becomes non-determinable. In fact, it was shown in ref. 6 that the 
application of A = A,T’ yields poor stipulation and the problem of the 
possibility of determining more than three parameters in the Sestak-Berggren 
equation remains debatable. 

The estimation of the rank of matrix (5) using the experimental data for 
the decomposition of Mg(OH), [lo] and gypsum [ll] with the aid of the 
above algorithm gives values of 4 or 5 for different segments of the 
experimental curve. So, disregarding A = A,T’ whose disadvantages were 
emphasized in ref. 12 allows estimation of 4 or 5 parameters of eqn. (3) 
against the three cited in ref. 6 as an ultimate value. 

In practice, the following procedure may be recommended to overcome 
local ambiguity. First, build the Jacobi matrix based on the experimental 
data obtained. Second, specify its rank. Third, find independent parameters. 
To do so, Ci minors of the Jacobi matrix must be considered to find among 
them those whose rank is equal to the rank R of the reference matrix. The 
parameters included in the minors satisfying the previous condition will be 
independent. 

ANALYSIS OF THE INDEPENDENCE OF KINETIC FUNCTIONS 

The space formed by twenty most often used kinetic functions were 
considered in ref. 13. Not all kinetic functions entering this space are 
independent [13], i.e., the dimension of the space is less than twenty. 
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In accordance with the theorem of ref. 14, the rank of the system of 
vectors is equal to the rank of the matrix built by the co-ordinates of these 
vectors. Then, the dimension of the space of kinetic functions may be 
specified as a rank of the matrix 

[fib,)] (6) 
where i (the number of (Y values) is not less than j (the number of vectors, 
kinetic functions). Rank (6) was specified using the above algorithm. Twenty 
functions from ref. 13 were used in the calculation. The values of (Y were 
prescribed by the generator of equally distributed random numbers within 
the ranges O-l and O-0.5. Within each of these intervals 100 combinations 
of 20 values were generated. It turned out that the rank of matrix (6) ranged, 
on average, from 9 to 12 for the former and from 8 to 11, for the latter 
interval, but did not exceed 14. So, the real dimension of the space of kinetic 
functions was twice as small as their total number. 

This means that some of the kinetic functions may be represented through 
a linear combination of independent functions and cannot, therefore, give 
any extra information as compared to the latter ones. On the other hand, 
each of the linear independent functions that fairly describe the process 
characterize some individual feature of the process. So, the application of 
the entire set of kinetic functions provides a formally comprehensive de- 
scription of the process. This is an argument for the non-traditional method- 
ology [15] of solving the inverse problem of non-isothermal kinetics. 

ANALYSIS OF THE INDEPENDENCE OF PARAMETERS IN THE MAIN NON-ISO- 
THERMAL KINETIC EQUATION 

With regard for the results obtained in the previous part, any kinetic 
function may be represented through N linear independent ones 

N 

f(4 = Cc;s,b) 

Then, the main equation of non-isothermal kinetics may be written as 

(7) 

(8) 

where fij =fj( (u;). In order to determine the number of independent parame- 
ters, we shall build the Jacobi matrix (2) for eqn. (8) 
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where ei = exp( -E,/RT). As the first column is a linear combination of N 
last ones, and the second one cannot be expressed with their use, the rank of 
matrix (9) equals N + 1. So, the number of the parameters in eqn. (8) to be 
determined is a unity less than the total number of parameters. Thus, when 
eqn. (8) is used, one of the parameters (either A or cj) is superfluous. This 
fact generates a specific kinetic principle of uncertainty. It implies that the 
pre-exponent and all N coefficients of Cj in eqn. (8) cannot be determined 
simultaneously. The pre-exponential factor is, therefore, estimated due to 
the loss of one of the independent functions and, consequently, one of the 
individual process features is inevitably lost at the level of its formal 
description. 

It should be noted that presentation of kinetic functions of a process 
through a linear combination of independent functions (eqn. (7)) provides a 
somewhat synthetic description. The application of similar process descrip- 
tions is a distinctive feature of the non-traditional methodology [15] used in 
solving the inverse kinetic problem. Therefore, the inverse problem for- 
mulated as the problem for determining the parameters in eqn. (8) makes it 
possible to relate its solution to the non-traditional methodology as well as 
to other methods cited in ref. 15. 

CONCLUSION 

In conclusion, the follo~ng aspects should be emphasized and allowed 
for in the practical calculation of the parameters of kinetic equations. 

(i) The real experimental data may be used to determine 4-5 parameters 
in the Sestak-Berggren equation. The dependence of the number of parame- 
ters to be determined on the segment of the kinetic curve seems to indicate 
the extreme character of maximum value. It is evident that 4 parameters 
may be estimated with sufficient reliability. 

(ii) The dependence A = A,T’ should be omitted in the Sestlk-Berggren 
equation, since its use makes one of the parameters (E or r) undefinable. 

(iii) Before determining the parameters of kinetic equations, a Jacobi 
matrix (2) should be built, and its rank and independent parameters esti- 
mated. The values of the parameters may have a physical sense only when 
they are independent. 

(iv) The application of the mathematical approach under consideration 
makes it possible to completely avoid local ambiguity [l] of the inverse 
kinetic problem. This approach, however, disregards global ambiguity [1] 
whose complete eli~nation is impossible due to an inevitable incomplete- 
ness of describing real processes in terms of formal models. 

In practice, global ambiguity may be decreased by applying the non-tradi- 
tional methodology to the solution of the inverse kinetic problem [LS]. One 
of its methods, implying a generalized description of a process as a linear 
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combination of independent kinetic functions, is pointed out in this work. 
Its more comprehensive discussion is a scope of another paper. 
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